
0021-8928/83/l 0075 $7.50/O PMM U.S.S.R., Vo1.46,pp.75-82 
Copyright Pergamon Press Ltd.1983.Printed in U.K. 

UDC 532.529 

THE TWO-FLUID MODEL OF FLOW OF GAS WITH PARTICLES DISPERSED IN IT* 

A.N. KRAIKO 

Several problems of the theory of gas flow with dispersed solid particles of small 
but finite volume are considered using the two-fluid model. Integral laws of con- 
servation for a mixture and particles, supplemented by formulas for the force of 
interaction and for the heat flux betweenthemedia, andby equations of state, areused 
as the basis of the analysis. The gas viscosity and thermal conductivity are as- 
sumed, as in /l/, of any significance only in relation to gas interaction with part- 
icles. Interaction between particles is taken into account only at discontinuity 
surfaces of the "film" /2-4/ and "cluster" /5/ types. In analyzing discontinuity 
surfaces within the scope of the model additional assumptions are made about their 
structure, which are required for closing the system of conditions at the discontin- 
uity. The self-similar problem about the initial disintegration stage of an arbit- 
rary discontinuity is investigated. 

1. Omitting the listing of assumptions that are made in two-fluid models of interpene- 
trating continuous media /l- 4, 6-9/, we present below the integral laws of conservation for 
the mixture and particles. 

We use the notation: p for the pressure of gas, p'. e, i = e i-PIP, T and v for the gas 
true density, internal specific energy and enthalpy, temperature and velocity, respectively, 
with a pso, e,, T, and v, for the respective parameters of "gas" of particles (the second phase). 
We also introduce i, = e, j- &p with E = lips”, although owing to the assumed absence of proper 
pressure of gas of particles, i, is not the specific enthalpy of a particles. Besides Pd 
and Ps"we use "blurred" densities P and ps , respectively, the masses of gas and particles 
per unit of mixture volume, and their porosities m = pip’ and m, = ps IP," with 

m +- m, = (p i p") + (ps / ps") = 1 (1.1) 

Denoting the arbitrary time-independent volume occupied by the mixture by Q , its bound- 
ing surface by Xl, and by dc an element of f3Sl, with n representing the external unit 
vector, we have for the investigated flow, in the absence of external forces andenergysources 
the following integral conservation laws: 

SSSpdnI:.=-SdtSSpvnd~ (u,=v.n) 
$1 ta ae 

S%S(pv -t p,v,)dnlj.--SdtSS(~n+ pu,,v + PsUsnvs)dc 
10 an 

(1.2) 

1 S%S(P(2e- 9) -1 ps (2e, + usa)) da I:. = - $ dt \j {pun (2i + u') + 

psusn(% + n,")J do (0 =Ivl) 

where t> to with to and t denoting aribtrary instants of time, cp is the force exerted by gas 
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on particles in a unit volume, and psq is the respective 
(1.1) and (1.2) it is necessary to know the equations of 
y which we assume to be 

heat flux to particles. To close 
state and the expressions forcp and 

with (pi and 'p,, taken to be known functions of thermodynamic parameters and of the absolute 
value of the relative particle velocity v - vs, but not of their derivatives. The latter im- 
plies the disregard oftheeffectofadditionalmass. The term PVm, = -pPmin 'p takes into 
account the variability of the volume occupied by particles or, what is the same, variationof 
the "through flow" cross section of the space free of particles. 

Integral laws of the form (1.2) are not the only ones possible. Thus, the equations of 
motion and energy of the mixture can be replaced by similar equations for the gas. The 
advantage of the representation used here is that (1.2) contains the maximum number of equa- 
tions in which P and ii are absent, hence not associated with assumptions abouttheinterphase 
interaction mechanism. This is particularly convenient in the analysis of discontinuities. 
In the absence of particle interaction, which in (1.2) is assumed everywhere, except possibly 
on some surfaces, there is no exchange of particle kinetic and internal energies. If such 
exchange is absent throughout Q, the last of Eqs.11.2) can be replaced by the law of conserva- 
tion of particle internal energy 

In subregions of parameter continuity we obtain from (1.2) with allowance for (1.1) and 
(1.3) the following differential equations which it is convenient for the subsequent analysis 

to represent together with (1.1) as 

T 
Ds Di 1 DP _ N ap, 

~=~-(,“~= 1 -&- -i_. V(p,v,)=O 

(1.5) 

where I) if)t and D"/Dt are operators of total differentiation with respect to talongthegas 
and particle trajectories, and s is the specific entropy of gas. 

The fifth and sixth of Eqs.(l.S) are usually postulated, n ot derived from integral laws, 
and supplemented by expressions (1.3) for pand 4. Besides the usual considerations on the 
role of integral and differential forms of the laws of conservation, the method adopted hexe 
is preferable for the following reason. The term pCm, in (1.3), which, incidentally,istaken 
into account in the theory of gas filtration in a medium of variable porosity, is more reason- 
able that SVP in the equation of motion of a single particle, and the fifth of Eqs.(l.S) is 
just such equation that can be taken as the input one. Terms containing E and 6 in (1.5) cor- 
respond to terms ms = p.!p." in (1.11 and pVm, in (1.3) which in our model appear inter-change- 
ably as terms that take into account the volume of particles. 

2. The strong discontinuities admitted by (1.2) belong to one of the following two clas- 
ses: discontinuities of the film (cluster) type that carry surface mass, momenta, etc., and 
those do not have such properties. We begin the analysis on discontinuities of the second 
class, and develop and refine the results of /1,3/. 

At the discontinuity 8% , generally m,~ becomes discontinuous besides other parameters, 
hence Pm&, and the normal to the discontinuity component of cp become infinite. This inhibits 
the use of the expression for rp,, from (1.3) and shows the necessity of introducing the normal 
to CC%& component F, of the surface force F(surface quantities are denoted below by capital 
letters). Since the formula for rp,is inapplicable on aQd, the surface force tangent compon- 
ent F, may generally appear in that case. The model of the medium must include, besides 
(1.31, either the definition of F,, and F, or the formulation of equivalent, physically valid 
assumptions generally specific for various discontinuities. 
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Let Dbe the discontinuity velocity along the normal nto 3% and [cpl = cp, -$J_ the dif- 
ference between 'p on various sides of it. At "mass-free" discontinuities it is reasonable to 
neglect particle interaction, which would enable us to use the law of conservationofparticle 
energy in the form (1.4). From (1.2) and (1.4) then follows that at the investigated discon- 
tinuities the following conditions are satisfied: 

AjE[p(v,-~)]=O, An~[p+j(u,-DD)+j,(~,,-DD)l=O (2.1) 
AT s [jvT + jsvsT] = 0, A’ EZ [j (Zi i- (u,, - D)’ in UT? $- 

js IX, + (II,, - D)’ + u,~~)] = 0, As’ G [P, (us, - D)] = O 

A;=[m,p]I js[u,,]-FF,=O, A,T~jsIvsr]-~~zO 

As” z j8 [e,] = 0 (j = p* (IQ - D)) 

where j and ja are stream densities continuous on 8S&, and V, = 1 VT 1. Thedistinctionbetween 
(2.1) and conditions in /l/ is due to the form of the sixth and seventh conditions with the, 
so far, unknown F,, and F,. 

It was assumed in /l/ that F,= 0 and the equality 

[(&I - D)*] -t Npl = 0 (2.2) 

was substituted for the sixth condition in (2.1). Condition (2.2) in /l/ was obtained by in- 
tegrating the fifth of Eqs.(l.5) with f= 0 over the "blurred" discontinuity stationary in the 
corresponding coordinate system (condition (2.2) was considered in /lo/ prior to /l/). Hence 
if (2.2) is to be valid it is necessary (but not sufficient, as shown below) that particles 
intersect md. This was not taken into account in the investigation of discontinuities in /l/, 
which resulted in a number of inaccuracies that were repeated in /7,9,11). 

According to (2.1) five types of discontinuities are possible. When j = jS = 0, the ex- 
pressions for Fn and F, are not required. Here, by virtue of (2.1), we have 

[PI = 0, v,, - D = us,+ - D = 0, F, = 0, F, = p [m,] (2.3) 

The discontinuities of yrr v,,,m,, e, and T are arbitrary and with allowance for (l.l), (1.3), 
and (2.3) define discontinuities of other parameters. In this case we have a contact (tangen- 
tial) discontinuity in both media. 

When j-0 an%j.#O, the closure of (2.1) requires, unlike in the previous case, the 
determination of t. Let us set F, = 0 which is now an assumption, not a corollary of (2.1). 
When F,=U , conditions A'= 0, A,T = 0 and A,'= 0 lead to equality (2.2) from which and other 
conditions (2.1) follows the continuity of p and all other parameters of particles and also 
un* -D=O. Discontinuity of VT- and ir are arbitrary, and the discontinuities of other para- 
meters of gas are obtained in terms of \7'l,[pl = oand [m,] = 0 from (1.1) and (1.3). Here we 
have in the gas a contact discontinuity intersected by a continuous stream of particles,along 
which, by virtue of (2.1) pn = d 

If the gas flows through a contact discontinuity in the medium of particles (j#u, is= 0) , 
then, by virtue of (2.1) F, = 0, and it is necessary to have either the expression for F, or 
a supplementary assumption on the relations between the parameters of gas. In the second case 

F %, whenever necessary, is determined in conformity with (2.1) using the formula F, = Lm,pl. 
To formulate such assumptions or expressions we used data from /12/ relative to flows in chan- 
nels with abrupt area changes. Let m,_ < m,+, ~VTIT --D 1 GUT and a be the speed of sound in 
the gas. Then, if the gas flows from the region whose parameters are denoted by the subscript 
minus, we set 

Is1 = 0 
(2.4) 

when m,_>m,+ and 1 V,--D 1 <a_, the application of the "Borda" scheme yields 

F, = h,lp_ (2.5) 

Prior to the appearance of /12/ relations (2.4) and (2.5) were used for analyzing flowsin 
ChSMelS with abrupt changes of area, and shock wave interaction with porous barriers /13/. 

If m,->m,, and I u,,--D 1 > a_,an additional conditions for closing system (2.1) is re- 
quired, as in /12/, only when 1 v,, - D 1 >a+, and is of the form 

F, = Im,lp+ (2.6) 

When -[m,l<l, the substitution of (2.4) for (2.6) does not greatly affect the results. 
The case of m,-<m,+ and Iv,,, -II 1 >aT - not considered here- requires special analysis, 
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although it is possible to apply (2.4) when Im,l<< 1 . 

Using one of conditions (2.4)- (2.6) together with (1.11, (1.31, the equality I;, [rn,~~], 
and when j,? : 0, the implied by (2.1) relations 

[v,l = 0, P+ / P_ = (u,_ -O)/ (u,, --D), [u, --ol = ApI i j 

2 [il = (p+-' + Q)[pl, Ipl y -i’ [p-*1 

provides the complete system of conditions that links gas parameters at the contact discontin- 

uity of particles. Here (u,,_+ -D) = 0, with arbitrary [m,l, I\~,71 and le,l . 
The last case of j#O and i, #O is the most complicated, since it requires supplement- 

ary information about F, and F,. Without attempting at its exhaustive investigation,we shall 
consider onlytwo fairly typical situation. We begin by stating that for small m, for the 
determination of F, and F, or of variations of component v, it is reasonable to consider the 
problem of intersection of the stationary discontinuity plane by an isolated particleofradius 

r. Let 1 be the relaxation length of the particle velocity lag. It can be shown that for 
the Stokes law of drag 1 :: 2r"P,"~,,'(~~vP0) , where Y is the coefficient of the gas kinematic 
viscosity. Let US considerthecase in which r and the discontinuity width hare considerably 
small than 1. As a rule, condition r< 1 is satisifed, 
~21, while pso:‘p”>l. 

since the Reynolds number Re, = ru,,/ 
The inequality h< 1 is, mostly also valid. Indeed, even in the 

case of weak compression shocksofcomparativelylarge thickness h-vi (a (A{,, - I)}, where rvl, = 

l&la, and the ratio 1 F. - (M, - l)Re,“ps” ! p”, hence for Re, 2 1 and M, -1 >p" I Ps', which is 
usually the case, we have llh>l. 

The introduction of constraints in the analysis of particle movement through the discon- 

tinuity it is not necessary to take into account force f. It seems reasonable to begin the 
investigation on the case of r<:pL in which for small r and J-2, -+I is always realized, at 
least in the case of compression shocks. When r<R a particle which intersects the discon- 
tinuity moves in a continuous stream whose variation depends only on n. Taking this into ac- 
count, we integrate the fifth of Eqs.Cl.5) for f = 0,defined in a system in which at the 

considered instant of time the discontinuity is quiescent (the discontinuity is assumed to 
have a stationary structure and h/v,, to be considerably less than the characteristic varia- 
tion of its velocity D) , we obtain (2.2) and 

[V,Tl = 0 (2.7) 

which together with (2.1) imply that F, = 0, and the remaining equations (2.1) are equivalent 

to the system 

[P (% - D)l = 0, [p + j (v, -. m + is (% - WI = 0 ) [%I = 0 (2.8) 

12i + (u, - D)“l = 0, [ps (us, - WI = 0, [es1 = 0, F,, = hp + i, (us,, - 0)1 

The last of Eqs.(2.8) determines F,,after variations of all parameters have been deter- 

mined by the remaining conditions (2.8) supplemented by (2.2), (2.71, (l.l), and (1.3). Here, 

as in the case of shock waves, when parameters D, j, j,ahead of the discontinuity are known, the 
parameters behind it are determined by specifying P+ or some other quantity that defines the 

discontinuity intensity. As [p]+O, when j#O and js#O, the above applies to discontinui- 

ties of all parameters. The limit velocity U (as [pl +O) is determined by the condition of 

existence of a nontrivial solution of an algebraic system that is linear and homogeneous with 

respect to [pl,...., and is the result of linearization of (2.2) and (2.8) with allowance for 

(1.1) and (1.3). As lrjl +O , velocity fl satisfies the equation 

f (X, A, x) Es (X - A)‘(XS - 1) - XX’ = u (2.9) 
X=(v,--)/A, LI=(L;,-v~,)IA, x=ps&6/(l-- 

sPs) = pspo2 / (ppt"), A2 = a2poz (1 - EP,) i {pp” + aps (6 - &p”)aY} 

where aT = (aP" 1 as),. If E = 6 ip"=l/p,", which is the case with our model, then A =~a. As shown 

in /l/, (2.9) with .1 = a defines also the characteristics of one-dimensional unsteady flows, 

different from the trajectories of gas and particles. 

The number of real roots of Eqs.(2.9) with ?> u depends on parameter'i41. This is illust- 

rated in Fig.1, where the solid and dash lines represent schematically the first term of (2.9) 

and XF , respectively, as functions of Xwhen Ahu_ Diagrams a-f in Fig.1 correspond to 

A-o,O<A(i, A-;l,l<~<A,=(i$_~"')"',A=A,andA>A, Intersections ofsolidanddashlines 

represent roots ofEq.(2.9). It will be seen that there are always at least two real roots. 

Wnen x41, which happens in most cases, they are close to F 1. 
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In conformity with (2.9) 

Formulas with the lower sign at A>0 hold when (1- A)"@%. Here and subsequently A7 0 
corresponds to lagging particles, while 'A<0 to opposite situation. In the case of u,<O the 
above definition differs from the generally accepted one. 

Besides the derived above equations, (2.9) can have other real roots. When A=O,thesolid 
and dash lines are tangent at the coordinate origin , and we have multiple root X‘= 0. Since 
it corresponds to the already investigated case of j-is= a, it is of no interest. If O<A< 
A,,(2.9) has no real roots different from X, _. When A =A, , the maximum of the solid curveis 

1. i _ 

tangent to the dash-line parabola, and when A>A,;it in- 
tersects the latter. Hence, when A7A*, there are four 
real roots. Although just before the tangency instant 
Xz7A, it is convenient to denote by XZ with A= A* 
the root nearest to X = 1, i.e. smaller than ti. Incid- 
entally, formulas (2.10) are valid for quantities with 
subscript "2" when (* -Ab)'>x only in this case. BY 
numbering the two remaining roots in the order of their 
growth we obtain Xa<X3< A and x,> A. If x<<l, then 
'X8 and x, are close to A and to each other. When xl(A2- 
i)4 1 , the following formulas hold: 

(u~--)~,~= X3,4u~~A (1 F Y'm)fh' (2.11) 

Fig.1 

We call the discontinuities that correspond at their low intensitytoroots X,,Z+ &-shocks. 
Weak c&-shocks move relative to gas either to the right or left at velocities close to the 
speed of sound, to consider them as analogs of compression shocks. A further argument in sup- 
port of this is provided by the calculation of gas entropy increase of such shocks. We call 
the discontinuities that correspond to roots X,,,, c&shocks. Weak c,*-shocks slightly out- 
distance particles (cs+) or lag behind them (c,-)and together with particles lag behind the gas. 
The shock-like variation of the c--shock at transition through A =; &should not be taken 
as due only to the root numbering convention. Only with such numbering X,, while remaining 
the root closest to X = 1 for all & , corresponds to a weak c--shock propagating to the left 
relative to gas at almost the speed of sound. 

In some of the discontinuities considered here the signs of j and j, differ, i.e. the gas 
and particles intersect discontinuities from different sides. WhenA>uand xe*?then in 
conformity with (2.10) and (2.11) this occlnzs in the case of weak c--shocks, roughly speaking, 
when particles lag at supersonic velocity, and in that of c+~ -shocks always. Since fi- X, 
--h, d=f(X, A,x). this analysis is readily applicable to the case when particles do not lag 
behind, but outdistance the gas. 

We obtain further information about discontinuities by determining the entropy increment 
in them. Disregarding E- 6/p” and using (2.2), (2.8)‘ (1.0, and (1.3), for small (p) we ob- 
tain 

/ Q+P*_ LP-P,, P++-P- 
N= \ p+" + F-2 _%+P, ) 

fPI 
?$+-!-Pp,- P+P- (T+-+-T-) 

Then, setting a I- Sip" = 1 lp,",we find that I4 - 1~1~. Retaining in expansions terms to IPP, 
we finally obtain the formula (V= 1 IP* is the specific volume) 

In the absence of particles (Ps= 0) this formula is the same as that for weak shocks in gas. 
Substituting is=P~V~-- %,a into (2.12) and using (2.9) and (2.10), we find that when 
L(AlEIv-%1/a is not close to unity, the first term in parentheses in (2.12) is equal 

ps (p" - p;m (l+ A)$) I (a”Q’Q,b’ (1 -c A)“1 

Owing to Ps* in the denominator its absolute value is less than VPP/~. Consequently,when 
VPP~O, weak &-shocks can only be, as in gas, compression shocks in which p and s increase 
in the direction of the flow of gas. 
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After the determination of i\ using (2.11) in the case of weak c,*-shocks we obtain for 
the first term in parentheses in (2.12) the expression 

{&Q (32 - 112 - A2 (h' - 1) pJ / (p;$P"alAf) 

which in typical situations ipso >P,) is positive and dominates VnpJ3. Since for any ~.IJP i' and 
s in weak c,'-shocks increase in the direction of gas flow through them. The latter is in- 

dependent of whether particles lag behind (A > 1) or outdistance (:2<--i)the gas. 
As previously noted, c,f -shocks are only possible when ~f0 while in the case of % -+O 

they continuously degenerate into contact discontinuitiesofthe particle medium. Undertypical 
conditions, when XZ P&6 < 1, C,* -shocks cannot be intensive. Although this is not a justi- 
fication for the formula used above fox &valid in the case of weak shock waves, the inequal- 
ity r<i" and, consequently, also equalities (2.2) and (2.7) seem to be at least plausiblefor 
+-shocks. By contrast, as the intensity of et-shocks increases r and 1, are, first, of the 
same order and, then, the shock thickness becomes much smaller than r. Under such conditions 
the variation of v, can be determined by solving the problem of passage of a sphere through a 
compression shock. To solve it, it is convenient to use a system of coordinates in which the 
unperturbed shock at the considered instant (in the previously defined sense) is at rest, and 
the velocity of gas has only its normal component. In that system the particle velocity com- 
ponent tangent to the shock prior to that instant is equal v,,- v5. We denote by subscript 1 
the projections of VT, v~and F, on the direction of vst- vr, and by subscript 2 those normal to 
it. Then on dimensional considerations with allowance for the problem symmetry it is possible 
to show that for a perfect gas with specific heat ratio x: 

where CD, (0, . . .) =~z 0. The determination of functions 0, is a separate problem. Here we as- 
sume these functions and, also f or g in (1.3) to be known. In this case (2.13) closes (2.8). 
When lu,,l + 0 , then in conformity with (2.13) and (2.8) [c,,l =m F,, = 0. 

3. When considering discontinuities of the film type it is necessary to make additional 
assumptions about its structure. Their number is minimal when the flow parameters depend of 
time and only on a single space variable x, with the film represented by a plane normal to 
the z axis along which we direct the normal n. Here, we consider flows of such type only, 
noting that although the assumptions made below are of a general nature, conditions at the 
film in the general and one-dimensional cases are not the same. This is associated with the 
transport of mass, momentum and energy along the film, which depend on its shape and the dis- 
tribution of.11 surface properties. 

The film is generated in consequence of intersections of particle trajectories, when"out- 
distancing" is inhibited. In the two-fluid approximation such inhibition is a property ofthe 
model (the medium of particles is considered to be a single-spped one), which on the face of 
it appears to be the consequence of its imperfection. Yet, even in the more complete three- 
fluid model which takes into account collisions of particles travelling at different speeds, 
narrow zones with particle density ps of order pso appear at intersections of trajectories. If 
outside such zones p,4Pps"tthey can be replaced by zero-thickness surfaces that carry surface 
mass, moments, and energy. When p,'*$,' we assume, as previously, that it is reasonable to 
associate the surface film properties only with particles, disregarding the gasthatsaturates 
the film. There is also no reason for taking into account gas accumulation in the film. 

Let l?, be the surface density of particles in the film,V, = nD /-V,%be the film velocity, 
and E, the specific internal energy of its particles. On these assumptions we obtain from 
(1.2) that on a plane film 

dR, 
Aj 

d&D) 
---$--z--b", o'(%vs,) 

7=-S' T=-Ar (3.1) 

[p (u, - D) VT] -= -I”,, j [Zi 
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precipitate onto the film, and acquire its velocity and temperature. Such interaction,natural 
for fairly close packing of film particles, p revents the substitution of the law of conserva- 
tion (1.4) of particle internal energy for the last of Eqs.(l.Z). 

Further assumptions about F,,, F,and Q are necessary for closing (3.1). The film is as- 
sumed to be a layer of fairly tightly packed, hence strongly interacting particles that move 
as a single whole, having the same internal energy and to be homogeneous with respect to m,. 
The quantity ms= m,* or the film porosity m* = 1 -m,* are assume to be known functions of 
parameters (or be constants). In the considered here model any gas parameter Cp , when passing 
through the film, undergoes a three-stage change: first, a sudden compression of the streamas 
m, increases from m,_ to m, , * then interaction with the film of thickness h = Rsim,*p: , fol- 
lowed by sudden expansion owing to the decrease of m,from m,* to m,,. The first and third 
stages are defined in terms of the contact discontinuity of the particles medium(j # 0, js =O) 
considered in Sect.2. The definition of interaction with the homogeneous film in the approx- 
imation of, for instance, the simplest model ofaporous medium also does not present any dif- 
ficulties. 

Let [cp]- = 'p- - cp_,[qpl" = @ - rp-,cp-and q+ be the values of 'p, when the left- and right-hand 
boundaries of the film are approached from its inside (the gas flows from left to right), and 

I@+ = 'p+ - 'p+. Denoting similarly the inputs of F,, F, andQ, we obtain 

[VI= [cpl- + [cpl’+ [‘+I+, Fn = Fn- + Fn’i- F,+, F, = F:> Q = Qh (3.2) 

where the definition of quantities with indices plus and minus is the same as given in Sect.2. 
By virtue of the above the quantities with the superscript h are known functions of film and 
gas parameters with the minus superscript. Omitting details, we shall show that these func- 
tions are obtained by integrating one-dimensional steady state equation of gas filtration in 
a homogeneous porous medium, which vanish when R,= 0 . Exact integration can be replaced the 
approximate one using the mean value theorem. As the result, FU”, F,’ and Q' are determined by 
the finite formulas (u,-fun')/2,...instead of by integrals of local gas parameters. 

4. Consider the one-dimensional problem of initial disintegration of an arbitrary dis- 
continuity. We shall measure time from the instant of disintegration and X from the point of 
parameter discontinuity at t = 0. If z is the minimal relaxation time determined by the terms 
f,q,F,,fl, and Q in (1.5) and (3.2), the problem comprises the initial stage O<t<T in which 
in conformity with the definition of r, these terms can be disregarded. Because of this,the 
determining parameters of time and length dimensions vanish, which makes the solutiondependent 
on the self-similar variable t =X/t. The rays E = E k or the straight lines X = &J with con- 
stants Ekr determined in the course of solution of the problem, divide the xt plane in zones 
of different structure. Besides zones of constant parameters (proper for each zone), the solu- 
tion generally contains centered waves with continuous variation of parameters from one ray to 
another. Boundaries of each zone are defined either by discontinuity trajectories propagating 
at constant velocities D = Ekror by the characteristics of system (1.5). On the film, as in 
the simpler self-similar problem /3/, R, = @t, where p is a constant. 

Centered waves are defined by conventional differential equations obtained from (1.5) with 
f = 0 and q = 6 on the assumption that all parameters are functions of 5 only. In centered 
waves admitted by (1.5) VT, vS~, S and e, are constant (v, is the component of v normal to the 
X axis), and the remaining quantities satisfy the equations 

(U - C)Ip' -6/z? (pO ! p)ps') $ p"n% = 0. (U - E)p%' t (4.1) 
pJ = 0 

(U, - E)P,<' + p& = 0, (U, - E)U,' -;- &]I' = 0 

where primes denote derivatives with respect to 5, and U and u, are projections of v and vs 
on the x axis. Owing to the constancy of entropy, p" and 4 are known functions of p. 

System (4.1) is linear and homogeneous with respect to u', p', u,' and p$ *and has nontrivial 
solutions when the determinant of its coefficients is zero. Let X = (a - 5)/a and ~1 =: (U - 
us) /a. Then this condition assumes the form (2.9). As already established, (2.9) alsodefines 
the velocities of low-intensity discontinuities, and in the case of one-dimensional unsteady 
flows it defines characteristics (1.5) different from the gas and particle trajectories. This 
and the results of Sect.2 show that centered waves can only consist of c* characteristics when 
1 A 1 ( A, z (1 +- x1'")"" . Here, in conformity with (2.10) we have u -_=eX,,, "Tfawhen x<l 
hence, as implied by the first or second of Eqs.(4.1), u' = &P'/ (Poe) t 0 (X)9 i.e. the form- 
ulas for centered waves in gas are accurate to O(x)_We call such waves C* rarefaction waves. 
If pOis a characteristic, 
ps are pOa = p. / psd 

for instance the initial density of gas, the increments of u, and 
times smaller than the increments of u and p . 

When A -> A*, (4.1) admits besides cf-waves for which the above reasoning is valid, 
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centered c,f -waves, for which in conformity with (2.11) 

This and (4.1) imply that in centered c,f -waves 

(4.2) 

where the subscript zero denotes quantities at the wave origin, i.e. the variation of 08 is 
considerably greater than that of remaining parameters and E. The latter is important in in- 
vestigations of c,* -waves in which particle density drops to zero, while the remaining quant- 

ities remain almost constant. BY 
virtue of (2.11) the c,$ -character- 

istic that corresponds to 0, -~ 0 and 

% - p& = 0 coincides with the traj- 

ectory of the particles. 

Theoretically discontinuities 

a b C and centered waves enable us to con- 

struct solutions not only for the 

Fig.2 
problem of disintegration of an arbit- 

rary discontinuity but, also, for 
other self-similar problems, more exactly, for their initial stages O<t-<r. Three possible 
patterns of such flows are shown in Fig.2, where a corresponds to the problem of disintegra- 
tion, and b and c to that of piston advance. The numerals l-5 in Fig.2 indicate regions of 
uniform flow or quiescence, 6 of centered C- -waves, 7 of c,- -waves, 8 piston trajectories, 9 

those of the c+ -discontinuity, 10 those of contact discontinuity in gas, 11 that of the film, 
12 of the contact discontinuity in the particle medium, and 13 those of r- and simultaneously 
of the cs-characteristic which separates the c- and ceJ waves. In Fig.2,b 11, vanishes abruptly 
in the particles contact discontinuity and in Fig.2,c it continuously approaches zero in the 
cs- -wave. In each specific case the solution scheme is determined conditions of the problem 

and its evolution requirements. The analysis of evolutionarity of system (1.5) and of the 
derived above discontinuities is the subject of a separate investigation. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

KRAIKO A.N. and STERNIN L.E., Theory of flows of a two-velocity continuous medium contain- 

ing solid or liquid particles. PMM, Vo1.29, No.3, 1965. 

KPAIKO A-N., Solution of the direct problem in the theory of the Lava1 nozzle with the flow 

of mixture of gas and foreign (solid or liquid) particles. In: Steam-Fluid Streams. 

Minsk, Inst. Teplo- i Masso-obmena, 1977. 

KRAIKO A.N., On discontinuity surfaces in a medium devoid of "proper" pressure. PMM, Vol. 

43, No.3, 1979. 

STERNIN L.E., MASMV B.N.,SHRAIBER A.A. and PODVYSOTSKII A.M., Two-phase Mono- and Polydis- 

perse Flows of Gas with Particles. Moscow, Mashinostroenie, 1980. 

ZEL'DOVICH 1a.B. and MYSHKIS A-D., Elements of Mathematical Physics. Moscow, NAUKA, 1973. 

RAKHMATULIN W.A., Fundamentals of the gasdynamics of interpenetrating motions of compres- 

sible media. PMM, Vo1.20, No.2, 1956. 

STERNIN L-E., Fundamentals of Gasdynamics of Two-phase Flows in Nozzles. Moscow, Mashino- 

stroenie, 1974. 

KRAIKO A.N.,NIGMATULIN R-I., STARKOV V.K. and STERNIN L.E., Mechanics of multiphase media. 

In: Hydromechanics. Vo1.6, Moscow, VINITI, 1972. 

NIGMATULIN R-I., Fundamentals of Mechanics of Heterogeneous Media. Moscow, NAUKA, 1978. 

10. NIKOLAEVSKII V.N., On some relaxation processes connected with the heterogeneity of con- 

tinuous media /in English/. Proc. 11th Internat. Congress Appl. Mech., Munich. 1964. 

Berlin-Heidelberg-New York, Springer Verlag, 1966. 

11. IANENKO N.N.,SOLOUKHIN R.I., POPYRIN A.N. and FOMIN V-M., Two-phase Supersonic Flows under 

Conditions of Velocity Nonequilibrium of Particles. Novosibirsk, NAUKA, 1980. 

12. GRIN' V.T., KRAIKO A.N. and MILLER L.G., On discontinuity disintegration on a perforated 
partition. PMTF, No.3, 1981. 

13. IL'IN Iu.P., Interaction of a shock wave with a semi-infinite porous medium. In: Priklad- 

naia Matematika, Iss.2, Tul'sk. Politekhn. Inst., 1975. 

REFERENCES 

Translated by J.J.D. 


